

Chemical Species Tomography of Carbon Dioxide

<u>Tsekenis S-A*1</u>, Polydorides N¹, Fisher E¹, Chighine A¹, Jiabin J¹, McCann H¹ Wilson D², Humphries G², Lengden M², Benoy T², Johnstone W² Kliment J³, Wright P³, Feng Y⁴, Nilsson LJ⁴, Victor DA Prat⁵

- ¹ School of Engineering, The University of Edinburgh, Edinburgh, UK
- ² Centre for Microsystems & Photonics, University of Strathclyde, Glasgow, UK
- ³ The University of Manchester, Oxford Road, Manchester, UK
- ⁴ Optoelectronics Research Centre, University of Southampton, Highfield, Southampton, UK
- ⁵ INTA Turbojet Engine Test Centre, Torrejón de Ardoz (Madrid), Spain

Corresponding author: a.tsekenis@ed.ac.uk

WCIPT '8 26th – 29th September 2016

Contents

The FLITES Project
Green Aviation and Tomographic Aims
CO ₂ phantom tests
Data analysis
Image reconstruction
Preliminary results
Conclusions

THE UNIVERSITY of EDINBURGH

The FLITES consortium

Other Partners and Sponsors

Large Corporate:

- Rolls-Royce
- Royal Dutch Shell

Academia:

- Edinburgh
- Manchester
- Strathclyde
- Southampton

Stanford

Hydrocarbon Spectroscopy

INTA

Test and Development

Altium

PCB Software (CAD)

Small to Medium Enterprise:

- Covesion
- Fianium
- OptoSci

Aims for Future Commercial Aviation

Engine Efficiency Optimisation

- Fuel Burning & Economic Efficiency
- Thrust Maximisation

Fuel Mixture Optimisation

- Low-Emission Fuels
- Combustion Science

- Maintenance / Sign-Off
- Novel Engine Designs

Aviation Regulation & Legislation

- Green Aviation
- Environmental Concerns

...By opening up exhaust plume chemistry as a window on engine and fuel performance

Aims for Future Commercial Aviation

...By opening up exhaust plume chemistry as a window on engine and fuel performance

THE UNIVERSITY of EDINBURGH

Detecting CO₂ and other Exhaust Gas Species

Beer-Lambert Law

Path concentration integral:

$$I_d = I_0 \cdot e^{-\alpha CL}$$

- The absorption of a chemical species is given by its vibration-rotation spectrum.
- The absorption is proportional to the path length L and concentration C

$$\alpha_{v} = -\ln\left(\frac{I_{t}}{I_{0}}\right)_{v} = \int_{l} P(l)X(l)S[T(l)]\phi_{v}dl$$

- v = optical frequency •
- T = temperature

- I = path length
- S = transition line strength

- P = pressure
- Φ = line shape function
- X = mole fraction

Wavelength Modulation Spectroscopy:

Stewart G, Johnstone W, Bain J, Ruxton K, Duffin K (2011), Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation, *J Lightwave Technol*, 29, **6**

2f/1f normalisation scheme:

Rieker G, Jeffries J, Hanson R (2009), Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments, Appl Optics, 48, **29**

Aims of phantom tests

Prior to engine test cell installation:

- Verify correct operation of all electronic, mechanical and optical subsystems
- Test signal recovery, spectroscopic fitting and image reconstruction algorithms
- ✓ Emulate a jet engine exhaust using tomography test phantoms

CO₂ phantoms

> Synthetically introduce a deterministic CO₂ concentration distribution

Annular propane burner

Exhausts: quasi-homogeneous circular CO₂ distribution

> Achieved output of 6% CO₂ at 250 °C (verified with point probe)

THE UNIVERSITY of EDINBURGH

CO₂ phantom experimental matrix

- > Systematically test the tomography system
- > 8 experimental conditions

Dataset	Description	Imaging space
1	40 cm phantom at centre of imaging space	90°
2	60 cm phantom -//-	135° 45°
3	40 cm phantom at 0°	
4	40 cm phantom at 45°	(go cm)
5	40 cm phantom at 90°	
6	40 cm phantom at 135°	180°
7	40 cm phantom at 180°	
	Dual phantom (see diagram on the right):	
8	60 cm phantom at 45°, edge of imaging space	225°
	40 cm phantom at 225°, 20 cm separation	← 1.4 m →

> Exposed all sampling beams to the CO₂ plume for a thorough system test

Data acquisition and analysis

- Captured Background (CO₂ off) and Signal data (CO₂ on) for 10 s and averaged
- ➤ Lock-in detector demodulated the fundamental (1f) and 1st harmonic (2f) signals

Computed the 1f normalised 2f signal:

$$2f/1f = \sqrt{\left[\left(\frac{X2f}{R1f}\right) - \left(\frac{X2f_{bk}}{R1f_{bk}}\right)\right]^2 + \left[\left(\frac{Y2f}{R1f}\right) - \left(\frac{Y2f_{bk}}{R1f_{bk}}\right)\right]^2}$$

Example of processed signal

- 2f/1f signal for Wavelength-Modulation Spectroscopy
- Compensated for background CO₂

3 beams crossing the CO₂ plume (Dataset 1)

- Highly sufficient SNR achieved
- > 2f/1f signal then fitted to spectroscopy databases to yield CO₂ concentration

Image reconstruction

- Two reconstruction algorithms developed and used
 - 1) Smoothness-imposing algorithm
 - Projects highly detailed version of image space onto a lower detail image subspace
 - Solve inverse problem numerically using Tikhonov regularisation

- ✓ Feature smoothing
- √ 1-step solution (non-iterative)

- Positivity-imposing algorithm
 - Reformulate the forward problem to preclude negative solutions
 - Project to lower detail image subspace
 - Linearise around a point and compute solution iteratively

$$y = Ac \xrightarrow{z = \log(c)} y = Ae^{z}$$

- ✓ Ideal for sparse concentration distributions
- ✓ Computationally efficient, 8 iterations typically needed

standard linear forward model

reformulated non-linear forward model

Preliminary results

Smoothness-imposing algorithm

Preliminary results

Positivity-imposing algorithm

Conclusions

- ✓ Presented the first results from the FLITES project, tomographically imaging CO₂
- ✓ Verified the reconstruction algorithms with experimental data
- ✓ Demonstrated the robustness of 1f-normalised Wavelength Modulation Spectroscopy
- ✓ Reconstructed images show excellent localisation of features
 - We are optimising the subspace basis functions to reduce common artefacts
 - and also enhancing the spectroscopic fitting to achieve near-zero background
- ✓ Verified correct operation of all front-end installed instrumentation subsystems
- Next planned stage is to gather data behind the jet engine

